This course explores the proposition that the frontiers of modern science, especially Complexity Science has increasing relevance to the study of real policy cases, offering social scientists a common set of thinking tools for observing and abstracting patterns of social behavior and ultimately for adapting policy mechanisms to address the wickedly hard questions of contemporary, global political economy.

A number of analyses and proofs of concept are available, dispersed throughout distant disciplines, ranging from social sciences (economics and sociology); to natural sciences (ecology, epidemiology, and physics); to practice-oriented research (engineering, policy analysis, and urbanism). The accomplishments of this approach are not fully apparent because their reach is contained within the narrow limits of their respective fields.

This course seeks to integrate both well-known and cutting-edge methodologies and theoretical frameworks and seeks the interface between experts of various academic disciplines and policymakers. The goal is to facilitate decision-making in a constantly changing environment. Potential topics include but are not limited to the following:

1. Complex social systems and applications in public policy
2. Complexity methods and analysis for policymakers.
3. Effects of governance in complex social systems
4. Management of financial networks, real estate, and financing spillovers
5. Smart cities, mobility, and towns in complex urban environments
6. Dynamic risk management in complex scenarios
7. Analyses that explicitly include political-spatial governance boundaries
8. Design and analysis of complex sociotechnical systems for public services
LEARNING OUTCOMES:
The course will enable students to become familiar with the analytical framework of complex adaptive systems and its application to global public policy. Students will acquire new tools to understand the adaptive processes and possible discontinuities that will shape the emergent global order. Analysis of the military, political, economic and cultural interactions of both Western and non-Western societies will illustrate and validate the complex systems approach, challenging conventional conceptions of what the state should do, and the ways in which it can act.

When policy makers confront a complicated problem, they often ask "What do we do first?" or "what is the best solution?" But for problems that are not just complicated, but complex in nature, those are the wrong questions. These problems -- which include everything from state-building to peacemaking to consolidating democracy -- are created by networks of interacting agents influencing each other in a dynamic system. So one cannot isolate a first step from a second, or identify a single optimal solution -- one has to approach the entire landscape of interacting units as a complex system, and identify its feedbacks and interdependencies to understand the effects of different actions. Only then can one build a strategy that is sufficiently dynamic and adaptive to attain desired outcomes in a constantly changing environment. Without understanding the nature of complexity, policy makers will continue to fail -- as they have so often in the last few decades -- to make progress on crucial problems that develop from the dynamic interactions among actors within linked systems.

COURSE REQUIREMENTS:
Students are expected to keep up with each week’s required readings and to participate in class discussion.

20%: Class discussion and one class presentation of a title in the syllabus.
20%: Midterm Take Home: A set of questions will be emailed to the class from which students will select their topic and write an essay of 1,000 words.
60%: One term paper, 3,500 words due at the end of the semester or an agent based model revealing a property of a complex social environment. Peer assessed.

A) Write a 3,500-word essay in which you explore how the study of complexity can be applied to practical problems of global public policy. Demonstrate potential connections between evolutionary theories of complexity and problems in global management, government or organizations. Students can choose topics in public health, environment, critical infrastructure, global security, cyberwarefare, demographic transitions As examples consider problems that are inadequately explained; can models of evolutionary complexity can be applied to provide a more realistic understandings and better policies than conventional analytical tools? Devise experiments that can reveal laws or patterns that govern how complex institutions, organizations or technologies organizations evolve.

OR:
B) Computationally adept students can construct computer-based simulation models to analyze complex systems. Show how artificial worlds like Sugarscape can be created to capture relevant aspects of the global problems under consideration during the semester. Given all exogenous and endogenous factors, construct model economies that evolve over time so that different scenarios can be analyzed using the models as virtual testbeds for theory generation and exploration.

REQUIRED READING

WEEK 1: January 25, 2018

Topic: What is Social Complexity: Building Blocks to examine global political economy and complexity

“Theories of complex social systems are tested on massive scales everyday, when governments implement various policies that often involve substantial resources and ultimately have tremendous impacts on the lives of countless citizens” (Miller and Page 2007: 235). Scholars from many disciplines are applying perspectives from the study of dynamical systems to problems of global and international public policy. How will this affect some of the basic paradigms of governance, development policy, foreign policy and international relations?

Social Complexity 1: Overview: via@YouTube (youtu.be/kkcGr3y70bk?a via @youtube) This module will provide a quick overview to the application theory to the social sciences. See Complexity Academy@Complexityacad

WEEK 2: FEBRUARY 1, 2018

Topic: The Great Debate on the Role of the State and Economy

Hilton L. Root. (2017) *Keynes or Hayek: Is the Road to the Future Mechanistic or Organic?* SSRN

WEEK 3: FEBRUARY 8, 2018

Topic: The Economy as a Complex Adaptive System

- Why do the rich get richer?

 Did complexity cause the demise of central planning and will it cause the reconsideration of neo-classical models of economic development as well?

 How do the global trends of growing economic and social inequalities result from the globalization of resource use, production and consumption?

Required Reading:

WEEK 4: FEBRUARY 15, 2018

Topic: Modeling Techniques

Guest Speaker: Steve Scott- MITRE Cooperation

Reading Robert Axtell and Doyne Farmer

http://breakthroughs.csmonitor.com/the-economy, part of a series the “Christian Science Monitor” is doing on complex systems more broadly (e.g., cities, diseases, traffic).

WEEK 5: FEBRUARY 22, 2018

Topic: Global Finance

Required Reading:

WEEK 6: MARCH 1, 2018
Topic: Networks

WEEK 7: MARCH 8, 2018
Topic: Culture, Cognition and Social Evolution

WEEK 8: MARCH 15, 2018
Spring Break

WEEK 9: MARCH 22, 2018
Topic: How Technology Evolves?

WEEK 10: MARCH 29, 2018
Topic: Great Transitions in Economic History
Root, Hilton L. Networks and Change in Economic History, chapter 1,2,4,6

WEEK 11: APRIL 5, 2018
Topic: Law for a Complex Global Economy

WEEK 12: APRIL12, 2018
Topic: The Rise of China
Root Hilton L (2018) Networks and Change in Economic History, chapter 7

WEEK 13: APRIL19, 2018
Topic: The coming instability
Root Hilton L. (2018) Networks and Change in Economic History, chapter 8-10

WEEK 14: APRIL26, 2018
Topic: Global Development

Development Assistance and Complexity for Practitioners

- Why do outbreaks of political or economic instability occur?
- How can we separate causes into structural conditions and triggering events?

Required Reading:

WEEK 15: MAY 3, 2018

Topic: Presentations and Assessment

Peer Assessment of Student Projects

Recommended Readings:

WEEK 1

WEEK 3

WEEK 4

Week 6

Matthew O. Jackson, *Networks in The Understanding of Economic Behaviors*, *Journal of Economic Perspectives* VOL.28, NO.4, Fall 2014

WEEK 7

WEEK 10

WEEK 13

WEEK 14

Useful Background Sources: (Not Required)

For a general overview of complexity:

M. Mitchell Waldrop, 1993, *Complexity: The Emerging Science at the Edge of*

General Software, Toolkits, and Hardware

A website reviewing academic work on evolutionary complexity and social science is

http://www.econ.iastate.edu/tesfatsi/

- **Ada for Agent-Based Simulation**

From Bruce R. Barkstrom (NOAA National Climate Data Center): "Ada, a general purpose programming language originally developed by the U.S. Department of Defence in 1983, appears to provide an appealing tool for developing agent-based software. The language has undergone two major revisions, one in 1995, and a second in 2005. An excellent open-source implementation is available with the GPL license at the AdaCore Site, from which it is possible to download both the GNAT GPL version and the GPS Integrated Development Environment, as well as numerous other libraries and toolkits. The reason Ada would appear to be an attractive language for agent-based simulations is that Ada defines a model for concurrent programming as part of the language itself. A task is an active component encapsulating a light-weight process and it provides a simple model for executing multiple code blocks concurrently - and for allowing different tasks to communicate and synchronize. In cases in which it is necessary for concurrent processes to avoid interference, Ada also provides protected entries and tasks. Because Ada has been designed to handle embedded, distributed systems, it also has excellent exception handling capabilities."

- **Brahms: Multi-Agent Discrete-Event Simulation (Java based)**
From the developers: "**Brahms**, developed by the Brahms Team in the Computational Sciences Division at the NASA Ames Research Center, is a multi-agent discrete-event simulation environment. It is also an Agent-Oriented Language for implementing real-time distributed agents. There is an agent language construct that can inherit from multiple group constructs. This permits the modeling of teams of agents either interacting in one model or distributed over multiple models. Agents are belief-based (BDI) activity-oriented, and both deliberative and reactive. Besides agents, the Brahms language also includes constructs for objects and object-class inheritance for modeling of data objects and real-world artifacts. Agents and objects are located in a conceptual geography model, enabling agent and object movement in this geography. The Brahms byte-code is XML, which is interpreted by the Brahms Virtual Machine. Each Brahms agent executes in a separate Java thread using a subsumption-based activity and rule execution engine. Multiple Brahms Virtual Machines can interact together via a network using a message- and directory-based communication layer. Agents can publish themselves and locate others on a network, using a distributed directory service. Agents interact via a message-based communication layer that can be based on any low-level communication protocol, such as Corba, UDP, TCP/IP, SOAP."

Brahms can be downloaded at [Agent iSolutions](https://www.agentsolutions.com/). A [Tutorial on Brahms](https://www.agentsolutions.com/tutorials/brahms/index.html) is also available.

- **Breve: 3-D Simulation Environment (Open Source)**

 Breve is a free software package that provides a 3-D environment for the simulation of decentralized systems and artificial life. Users define the behaviors of agents in a 3-D world and observe how they interact. Breve includes physical simulation and collision detection for the simulation of realistic creatures, and an OpenGL display engine so that users can visualize their simulated worlds. It is available for Mac OS X, Linux, and Windows platforms.

- **MASON: Multi-Agent Simulator - Latest Release (Java, Open Source)**

 The George Mason University Evolutionary Computation Laboratory and Center for Social Complexity has announced a new release (MASON 12) of the **MASON multiagent simulation toolkit**. MASON contains both a model library and an optional suite of visualization tools in 2D and 3D. MASON is a joint effort between George Mason University's ECLab (Evolutionary Computation Laboratory) and the GMU Center for Social Complexity, and was designed by Sean Luke, Gabriel Catalin Balan, and Liviu Panait, with help from Claudio Cioffi-Revilla, Sean Paus, Daniel Kuebrich, and Keith Sullivan. A SwarmFest04 presentation on MASON can be accessed [here](https://www.swarmfest.org/2004/papers/mason.pdf).

- **Repast Latest Releases (Java,Python,C#; Open Source)**
Repast (REcursive Porous Agent Simulation Toolkit) is an agent-based simulation toolkit specifically designed for social science applications. Originally developed by researchers at the University of Chicago and the Argonne National Laboratory, Repast is now managed by the non-profit volunteer organization ROAD (Repast Organization for Architecture and Development). Repast is currently released in four versions supporting model development in three different languages: RepastJ (Java based); RepastPy (based on the Python scripting language); Repast.Net (implemented in C#, but any .Net language can be used); and Repast S (Simphony, Java-based, developer's alpha release 2). Repast runs on virtually all modern computing platforms (e.g., Windows, Mac OS, and Linux). The latest Repast releases, along with detailed technical information regarding the installation and use of RePast, can be found at the RePast Sourceforge Website.

NetLogo is a cross-platform multi-agent programmable modeling environment. NetLogo was authored by Uri Wilensky in 1999 and is under continuous development at the CCL (the people who brought you StarLogoT). NetLogo also powers the HubNet participatory simulation system. NetLogo is free of charge. For a fuller description, please go to: http://ccl.northwestern.edu/netlogo/docs/

Statement on special needs of students
If you are a student with a disability and you need academic accommodations, please see me and contact the Disability Resource Center (DRC) at 993-2474. All academic accommodations must be arranged through the DRC.

Online Student Journal
New Voices in Public Policy: I will consider nominating the very best papers in this course for publication in New Voices in Public Policy. New Voices is a student- and faculty-reviewed journal that shares SPP's finest student work with the rest of the world.

SPP Policy on Plagiarism
The profession of scholarship and the intellectual life of a university as well as the field of public policy inquiry depend fundamentally on a foundation of trust. Thus any act of plagiarism strikes at the heart of the meaning of the university and the purpose of the School of Public Policy. It constitutes a serious breach of professional ethics and it is unacceptable.

Plagiarism is the use of another’s words or ideas presented as one’s own. It includes, among other things, the use of specific words, ideas, or frameworks that are the product of another’s work. Honesty and thoroughness in citing sources is essential to professional accountability and personal responsibility. Appropriate citation is necessary so that arguments, evidence, and claims can be critically examined.

Plagiarism is wrong because of the injustice it does to the person whose ideas are stolen. But it is also wrong because it constitutes lying to one’s professional colleagues. From a prudential perspective, it is shortsighted and self-defeating, and it can ruin a professional career.
The faculty of the School of Public Policy takes plagiarism seriously and has adopted a zero-tolerance policy. Any plagiarized assignment will receive an automatic grade of “F.” This may lead to failure for the course, resulting in dismissal from the University. This dismissal will be noted on the student’s transcript. For foreign students who are on a university-sponsored visa (e.g. F-1, J-1 or J-2), dismissal also results in the revocation of their visa.

To help enforce the SPP policy on plagiarism, all written work submitted in partial fulfillment of course or degree requirements must be available in electronic form so that it can be compared with electronic databases, as well as submitted to commercial services to which the School subscribes. Faculty may at any time submit student’s work without prior permission from the student. Individual instructors may require that written work be submitted in electronic as well as printed form. The SPP policy on plagiarism is supplementary to the George Mason University Honor Code; it is not intended to replace it or substitute for it.

Topics of Recent Students’ Papers

- Pan-Islamism: A Quiet Network of Resilience
- The Complexity of Space Object Behavioral Science: A Surveillance Network Toward Perfect Information
- A Complexity Perspective on Bank Reserve Requirements
- The Use of Social Media and Policing
- The Network Structures and Cyber Ecosystem Impacts of Government Sponsored Non-State Cybercrime Organizations